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Abstract. In this study, a new application of Taylor expansion is con-
sidered to estimate the solution of Volterra-Fredholm integral equations
(VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs).
Our proposed method is based upon utilizing the nth-order Taylor poly-
nomial of unknown function at an arbitrary point and employing inte-
gration method to convert VFIEs into a system of linear equations with
respect to unknown function and its derivatives. An approximate solution
can be easily determined by solving the obtained system. Furthermore,
this method leads always to the exact solution if the exact solution is a
polynomial function of degree up to n. Also, an error analysis is given.
In addition, some problems are provided to demonstrate the validity and
applicability of the proposed method.
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1. Introduction

The Volterra-Fredholm integral equations obtained from parabolic boundary
value problems, from the mathematical modelling of the spatio-temporal exten-
sion of an epizootic, and moreover from different biological and physical models
[1]. Furthermore, differential equations with transformed argument or differ-
ential equations of neutral type can be transformed into Volterra-Fredholm
integral equations[24]. The Volterra-Fredholm integral equations are consid-
ered in the literature in the following two forms

ψ(x) = f(x) + λ1

∫ x

a

K1(x, t)ψ(t)dt+ λ2

∫ b

a

K2(x, t)ψ(t)dt, (1.1)

and the mixed form

ψ(x) = f(x) + λ

∫ x

a

∫ b

a

K(s, t)ψ(t)dtds, (1.2)

where functions f(x), K1(x, t), K2(x, t) and K(s, t) are analytic functions and
λ1, λ2 and λ are arbitrary constants.

It is well-known that the analytical solution of VFIEs generally does not exist
except for special cases, and thus, numerical methods to obtain an approximate
solution have become the preferred approach for solving VFIEs. Several numer-
ical and approximate methods such as the Adomian decomposition method [1],
the modified decomposition method [2], Taylor series method [3], direct and it-
erative methods [4], pseudospectral methods [5] and other methods [6-10] have
been used for solving linear Volterra-Fredholm integral equations. In recent
years, many different methods have been proposed to estimate the solution
of nonlinear Volterra-Fredholm integral equations, such as collocation method
[11], Taylor polynomial method [12], homotopy perturbation method [13], tri-
angular functions methods [14], rationalized Haar functions methods [15, 16],
modification of hat functions [17], wavelet method [18] and other methods [19-
25].

The method presented in this paper is applicable to a wide range of prob-
lems and we summarize the history of some of the problems that have been
solved by this method. Xian-Fang Li [26] proposed a novel application of Tay-
lor expansion method for approximate solution of linear ordinary differential
equations with variable coefficients. Next, Li and his co-authors expanded the
above-mentioned method for solving Abel integral equation [27, 28], Riccati
equation [29], an integral equation with fixed singularity for a cruciform crack
[30], a class of linear integro-differential equations [31], and fractional integro-
differential equations [32]. Vahidi and Didgar improved the Taylor expansion
method proposed in [29] for determining the solution of Riccati equations [33].
Didgar and Ahmadi expanded the method proposed in [26] for solving sys-
tems of linear ordinary and fractional differential equations [34]. Moreover,
Maleknejad and Damercheli [35] developed the method for solving linear second
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kind Volterra integral equations system. This work presents a new and simple
method based on Taylor expansion [26-35] to solve linear Volterra-Fredholm
integral equations and systems of including them. By expanding unknown
function to be determined as an nth-order Taylor polynomial and employing
integration method, we can convert the VFIE into a system of linear equations
with respect to unknown function and its derivatives. An approximate desired
solution is determined by solving the resulting system according to a standard
rule. In a similar manner, by means of the Taylor expansion for unknown
functions, the SVFIEs will be converted into a system of linear equations with
respect to unknown functions and their derivatives. As before, a desired solu-
tion can be obtained by solving the resulting new system. The results of the
obtained numerical approximations of this method are then compared with the
referenced methods for different examples. In the present investigation, the
main powerful advantage of this method is that an nth-order approximation is
equal to exact solution if the exact solution is a polynomial function of at most
n.

The rest of this paper is organized as follows. In Section 2, we introduce our
method for solving VFIEs and SVFIEs. In Section 3, we give an error analysis.
In Section 4, we investigate several numerical examples, which demonstrate the
effectiveness of our technique. In Section 5, some tentative conclusions will be
drawn.

2. Description of the Method

2.1. Linear Volterra-Fredholm integral equation of the second kind.
Consider the Volterra-Fredholm integral equation (1.1) as follows

ψ(x) + λ1

∫ x

a

K1(x, t)ψ(t)dt+ λ2

∫ b

a

K2(x, t)ψ(t)dt = f(x). (2.1)

To solve Volterra-Fredholm integral equation (2.1) approximately by following
the method used in previous studies [26-35], we convert the VFIE into a sys-
tem of linear equations with respect to unknown function and its derivatives.
Toward this goal, we consider the assumptions below.
Assumption 1: The demanded solution ψ(t) is n+ 1 times continuously dif-
ferentiable. Therefore, ψ(t) can be expressed in terms of the nth-order Taylor
series at an arbitrary point x ∈ I as

ψ(t) = ψ(x) + ψ′(x)(t− x) + · · ·+ 1

n!
ψ(n)(x)(t− x)n + En(t, x), (2.2)

in which En(t, x) indicates the Lagrange error bound

En(t, x) =
ψ(n+1)(ξ)

(n+ 1)!
(t− x)n+1, (2.3)
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for some point ξ between x and t.
Assumption 2: Generally, the Lagrange error bound En(t, x) becomes suffi-
ciently small as n gets great enough. Especially, if the demanded solution ψ(t)
is a polynomial function of degree up to n, then the last Lagrange error bound
becomes zero. In other words, the obtained approximate solution of Eq. (2.1)
is equal to the demanded true solution.
By omitting the last Lagrange error bound as in Assumption 2, we approxi-
mately expand ψ(t) as

ψ(t) ≈
n∑

k=0

ψ(k)(x)
(t− x)k

k!
. (2.4)

Inserting the approximate relation (2.4), for ψ(t), into Eq. (2.1) leads to

ψ(x) + λ1

n∑
k=0

(−1)k

k!
ψ(k)(x)

∫ x

a

K1(x, t)(x− t)kdt+

λ2

n∑
k=0

(−1)k

k!
ψ(k)(x)

∫ b

a

K2(x, t)(x− t)kdt = f(x), (2.5)

that can be simplified as

c00(x)ψ(x) + c01(x)ψ
′(x) + . . .+ c0n(x)ψ

(n)(x) = f(x), (2.6)

where

c0k(x) = δ0k +
(−1)k

k!

[
λ1

∫ x

a

K1(x, t)(x− t)kdt+ λ2

∫ b

a

K2(x, t)(x− t)kdt

]
,

k = 0, . . . , n. (2.7)

In fact Eq. (2.6) is a linear ordinary differential equation with respect to ψ(x)
and its derivatives up to order n. In the following, we want to determine
ψ(x), . . . , ψ(n)(x) by solving a system of linear equations. In order to achieve
this goal, other n independent linear equations with respect to ψ(x), . . . , ψ(n)(x)

are needed, which can be achieved by integrating both sides of Eq. (2.1) n times
with respect to x from a to s and with the help of changing the order of the
integrations. Therefore, we have∫ x

a

(x− t)i−1ψ(t)dt+ λ1

∫ x

a

∫ x

t

(x− s)i−1K1(s, t)ψ(t)dsdt+

λ2

∫ b

a

∫ x

a

(x− s)i−1K2(s, t)ψ(t)dsdt = f(i)(x), i = 1, . . . , n, (2.8)

where

f(i)(x) =

∫ x

a

(x− t)i−1f(t)dt, i = 1, . . . , n, (2.9)
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in which the variable s has replaced by x, for simplicity. Similarly, we apply
the Taylor expansion again and after substituting (2.4) for ψ(t) into Eq. (2.8),
we obtain

n∑
k=0

(−1)k

k!
ψ(k)(x)

∫ x

a

(x− t)k+i−1dt+

λ1

n∑
k=0

(−1)k

k!
ψ(k)(x)

∫ x

a

∫ x

t

(x− s)i−1(x− t)kK1(s, t)dsdt+

λ2

n∑
k=0

(−1)k

k!
ψ(k)(x)

∫ b

a

∫ x

a

(x− s)i−1(x− t)kK2(s, t)dsdt = f(i)(x),

i = 1, . . . , n, (2.10)

or equivalently

ci0(x)ψ(x) + ci1(x)ψ
′(x) + . . .+ cin(x)ψ

(n)(x) = f(i)(x), i = 1, . . . , n,(2.11)

where

cik(x) =
(−1)k

k!
(− (x− a)k+i

k + i
+ λ1

∫ x

a

∫ x

t

(x− s)i−1(x− t)kK1(s, t)dsdt+

λ2

∫ b

a

∫ x

a

(x− s)i−1(x− t)kK2(s, t)dsdt), k = 0, . . . , n. (2.12)

In this way, Eqs. (2.6) and (2.11) construct a system of linear equations with
respect to the unknown function ψ(x) and its derivatives up to order n. Briefly,
this system can be rewritten as follows

C(x)Ψ(x) = F (x), (2.13)

where

C(x) =


c00(x) c01(x) . . . c0n(x)

c10(x) c11(x) . . . c1n(x)
...

... . . . ...
cn0(x) cn1(x) . . . cnn(x)

 , (2.14)

F (x) =


f(x)

f(1)(x)
...

f(n)(x)

 , Ψ(x) =


ψ(x)

ψ′(x)

ψ′′(x)
...

ψ(n)(x)

 . (2.15)

In the sequel, making use of a standard rule to the resulting system yields an
nth-order approximate solution of Eq. (2.1) as ψn(x). We note that not only
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ψ(x) but also ψ(i)(x), for i = 1, . . . , n, are determined by solving the resulting
system but in point of fact, it is ψ(x) that we need.

2.2. Mixed Volterra-Fredholm integral equation. Consider the mixed
Volterra-Fredholm integral equation (1.2) as follows

ψ(x) + λ

∫ b

a

∫ x

a

K(s, t)ψ(t)dsdt = f(x). (2.16)

Proceeding as before, to solve the mixed Volterra-Fredholm integral equa-
tion (2.16) approximately, we reduce the mixed VFIE into a system of linear
equations in unknown function and its derivatives. To achieve this end, sub-
stituting the approximate relation (2.4), for unknown function ψ(t), into Eq.
(2.16), we obtain

ψ(x) + λ

n∑
k=0

(−1)k

k!
ψ(k)(x)

∫ b

a

∫ x

a

K(s, t)(x− t)kdsdt = f(x). (2.17)

Thus Eq. (2.16) is converted into linear ordinary differential equation (2.17)
with respect to ψ(x) and its derivatives up to order n. Now, we want to deter-
mine ψ(x), . . . , ψ(n)(x) by solving a system of linear equations. The approach to
be used here is identical to the approach used in the previous subsection. This
means that we should integrate both sides of the (2.16) n times. Consequently,
we have∫ x

a

(x− t)i−1ψ(t)dt+ λ

∫ b

a

∫ x

a

(x− s)i−1K(s, t)ψ(t)dsdt = f(i)(x), (2.18)

where

f(i)(x) =

∫ x

a

(x− t)i−1f(t)dt, i = 1, . . . , n. (2.19)

We again apply the Taylor polynomial and after substituting (2.4) for ψ(t) into
Eq. (2.18), we obtain

n∑
k=0

(−1)k

k!
ψ(k)(x)

∫ x

a

(x− t)k+i−1dt+

λ

n∑
k=0

(−1)k

k!
ψ(k)(x)

∫ b

a

∫ x

a

(x− s)i−1K(s, t)(x− t)kdsdt = f(i)(x), (2.20)

Therefore, Eqs. (2.17) and (2.20) construct a system of linear equations for
the unknown function ψ(x) and its derivatives up to order n. We indicate this
system as follows

C(x)Ψ(x) = F (x), (2.21)
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where

C(x) =


c00(x) c01(x) . . . c0n(x)

c10(x) c11(x) . . . c1n(x)
...

... . . . ...
cn0(x) cn1(x) . . . cnn(x)

 , (2.22)

F (x) =


f(x)

f(1)(x)
...

f(n)(x)

 , Ψ(x) =


ψ(x)

ψ′(x)

ψ′′(x)
...

ψ(n)(x)

 . (2.23)

In coefficients matrix (2.22), the first row refers to the coefficients of ψ(i)(x)

in Eq. (2.17) for i = 0, . . . , n and the other rows refer to the coefficients of
ψ(i)(x) in Eq. (2.20) for i = 0, . . . , n. Application of a standard method to the
obtained system (2.21) results in an approximate solution of Eq. (2.16).

2.3. System of Volterra-Fredholm integral equation. A system of linear
Volterra-Fredholm integral equations can be considered as follows

ψi(x) + λ1

∫ b

a

n∑
j=1

K1ij (x, t)ψj(t)dt+ λ2

∫ x

a

n∑
j=1

K2ij (x, t)ψj(t)dt = fi(x),

i = 1, . . . , n, (2.24)

where fi(x), K1ij (x, t) and K2ij (x, t) are known functions and ψj(x) are the
unknown functions for i, j = 1, . . . , n, with fi(x),K1ij (x, t),K2ij (x, t) ∈ C(I),
where I is the interval of interest.

In this section we convert the linear Volterra-Fredholm integral equations
system (2.24) into a system of linear equations in unknown functions and their
derivatives by the following procedure:

The method assumes that the desired solutions ψj(t) are m + 1 times con-
tinuously differentiable on the interval I, i.e., ψj ∈ Cm+1(I). Therefore, for
ψj ∈ Cm+1(I), ψj(t) can be expressed in terms of the mth-order truncated
Taylor expansion at an arbitrary point x ∈ I as

ψj(t) ≈
m∑

k=0

ψ
(k)
j (x)

(t− x)k

k!
. (2.25)

Inserting the approximate relation (2.25), for unknown functions ψj(t), into
Eq. (2.24), we obtain

ψi(x) + λ1

n∑
j=1

m∑
k=0

(−1)k

k!
ψ
(k)
j (x)

∫ b

a

K1ij (x, t)(x− t)kdt
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+λ2

n∑
j=1

m∑
k=0

(−1)k

k!
ψ
(k)
j (x)

∫ x

a

K2ij (x, t)(x− t)kdt

= fi(x), i = 1, . . . , n. (2.26)

Now, we consider Eq. (2.26) as a linear system of ordinary differential equa-
tions with rspect to ψj(x) and its derivatives up to order m. In other words,
we obtained n linear equations in (2.26) for n× (m+1) unknowns ψ(k)

j , for k =

0, . . . ,m, j = 1, . . . , n. In the following, we want to determine ψj(x), . . . , ψ
(m)
j (x)

by solving a system of linear equations. In order to achieve this goal, other
n × m independent linear equations with respect to ψj(x), . . . , ψ

(m)
j (x) are

needed, which can be achieved by integrating both sides of Eq. (2.24) m times
with respect to x from a to s and changing the order of the integrations. Thus,
we have∫ x

a

(x− t)l−1ψi(t)dt+ λ1

n∑
j=1

∫ b

a

∫ x

a

(x− s)l−1K1ij (s, t)ψj(t)dsdt

+λ2

n∑
j=1

∫ x

a

∫ x

t

(x− s)l−1K2ij (s, t)ψj(t)dsdt

= f
(l)
i (x), l = 1, . . . ,m, (2.27)

where

f
(l)
i (x) =

∫ x

a

(x− t)l−1fi(t)dt, i = 1, . . . , n, (2.28)

in which the variable s has replaced by x, for simplicity. Substituting (2.25)
for ψj(t) into Eq. (2.27) we have

m∑
k=0

(−1)k

k!
ψ
(k)
i (x)

∫ x

a

(x− t)l+k−1dt

+λ1

n∑
j=1

m∑
k=0

(−1)k

k!
ψ
(k)
j (x)

∫ b

a

∫ x

a

(x− s)l−1(x− t)kK1ij (s, t)dsdt

+λ2

n∑
j=1

m∑
k=0

(−1)k

k!
ψ
(k)
j (x)

∫ x

a

∫ x

t

(x− s)l−1(x− t)kK2ij (s, t)dsdt =

f
(l)
i (x), (2.29)

for l = 1, . . . ,m.
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Therefore, Eqs. (2.26) and (2.29) construct a system of linear equations for
the unknown functions ψj(x) and its derivatives up to order m. We rewrite
this system as the following compact form

C(x)Ψ(x) = F (x), (2.30)
where

C(x) =



c1010(x) · · · c10n0(x) · · · c101k(x) · · · c10nk(x) · · · c101m(x) · · · c10nm(x)

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
cn0
10 (x) · · · cn0

n0(x) · · · cn0
1k (x) · · · cn0

nk(x) · · · cn0
1m(x) · · · cn0

nm(x)

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
c1l10(x) · · · c1ln0(x) · · · c1l1k(x) · · · c1lnk(x) · · · c1l1m(x) · · · c1lnm(x)

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
cnl
10(x) · · · cnl

n0(x) · · · cnl
1k(x) · · · cnl

nk(x) · · · cnl
1m(x) · · · cnl

nm(x)

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
c1m10 (x) · · · c1mn0 (x) · · · c1m1k (x) · · · c1mnk (x) · · · c1m1m(x) · · · c1mnm(x)

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

...
cnm
10 (x) · · · cnm

n0 (x) · · · cnm
1k (x) · · · cnm

nk (x) · · · cnm
1m (x) · · · cnm

nm(x)



,

(2.31)

F (x) =
[
f1(x), . . . , fn(x), . . . , f

(l)
1 (x), . . . , f

(l)
n (x), . . . , f

(m)
1 (x), . . . , f

(m)
n (x)

]T
, (2.32)

Ψ(x) =
[
ψ1(x), . . . , ψn(x), . . . , ψ

(k)
1 (x), . . . , ψ

(k)
n (x), . . . , ψ

(m)
1 (x), . . . , ψ

(m)
n (x)

]T
, (2.33)

where in coefficients matrix (2.31), the first n rows refer to coefficients of
ψ
(k)
j (x) in Eq. (2.26) for k = 0, . . . ,m, j = 1, . . . , n and the other rows refer to

coefficients of ψ(k)
j (x) in Eq. (2.29) for l = 1, . . . ,m. Application of a standard

rule to the resulting new system yields an mth-order approximate solution of
Eq. (2.24) as ψj,m(x). We note that not only ψj(x) but also ψ

(k)
j (x), for

k = 1, . . . ,m is determined by solving the resulting new system but in point of
fact, it is ψj(x) that we need.

3. Error Analysis

In this section, the stability analysis of the scheme is carried out and we
expand the error analysis proposed in [28] for derived mth-order approximate
solution of Volterra-Fredholm integral equations system (2.24) in order to get
theoretical features about the convergence of the suggested method. Suppose
that the exact solutions are infinitely differentiable in the interval I; so ψj(t)

can be expanded as a uniformly convergent Taylor series in I as follows

ψj(t) =

∞∑
k=0

ψ
(k)
j (x)

(t− x)k

k!
. (3.1)

Using the proposed method in the previous section, SVFIEs can be converted
into an equivalent system of linear equations with respect to unknown functions
ψ
(k)
i (x), k = 0, 1, . . . as

CΨ = F, (3.2)
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where

C = lim
n−→∞

Cnn
nn, Ψ = lim

n−→∞
Ψn, F = lim

n−→∞
Fn, (3.3)

in which Cnn
nn, Ψn and Fn, as shown in the previous section, are defined as

follows

Cnn
nn =

[
cpqij (x)

]
n(m+1)×n(m+1)

, Ψn =
[
ψ
(k)
i (x)

]
n(m+1)×1

,

Fn =
[
f
(l)
i (x)

]
n(m+1)×1

. (3.4)

Hence, under the solvability conditions for the above system and letting B =

C−1, the unique solution of system (3.2) is represented as

Ψ = BF. (3.5)

We rewrite relation (3.5) in an alternative matrix form as[
Ψn

Ψ∞

]
=

[
Bnn

nn Bn∞
n∞

B∞n
∞n B∞∞

∞∞

] [
Fn

F∞

]
. (3.6)

Accordingly, we can find out that the vector Ψn consists of the first n(m+ 1)

elements of the exact solution vector Ψ must satisfy the following relation

Ψn = Bnn
nnFn + Bn∞

n∞F∞ (3.7)

According to the proposed process in this paper, the unique solution of SVFIEs
(1.1) can be denoted as

Ψ̃n = Cnn−1

nn Fn, (3.8)

where Ψn is replaced by Ψ̃n as its approximate solution.
Subtracting (3.8) from (3.7) leads to

Ψn − Ψ̃n = Dnn
nnFn + Bn∞

n∞F∞ (3.9)

where Dnn
nn = Bnn

nn − Cnn−1

nn .
Now, we expand the right-hand side of (3.9) and the first n elements of the

vector at the left-hand side of (3.9) can be expressed as

ψn(x)− ψ̃n(x) =

m∑
j=0

n∑
i=1

dp0ij (x)f
(j)
i (x) +

∞∑
j=m+1

n∑
i=1

bp0ij (x)f
(j)
i (x),

p = 1, . . . , n, (3.10)

where

ψn(x) =


ψ1(x)

ψ2(x)
...

ψn(x)

 , ψ̃n(x) =


ψ̃1(x)

ψ̃2(x)
...

ψ̃n(x)

 , (3.11)
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and dp0ij (x), b
p0
ij (x) are the elements of Dnn

nn and Bn∞
n∞, respectively. Thus,

according to the Cauchy-Schwarz inequality we have

∣∣∣ψn(x)− ψ̃n(x)
∣∣∣ ≤

 m∑
j=0

n∑
i=1

∣∣∣dp0ij (x)∣∣∣2
 1

2
 m∑

j=0

n∑
i=1

∣∣∣f (j)i (x)
∣∣∣2
 1

2

+

 ∞∑
j=m+1

n∑
i=1

∣∣∣bp0ij (x)∣∣∣2
 1

2
 ∞∑

j=m+1

n∑
i=1

∣∣∣f (j)i (x)
∣∣∣2
 1

2

. (3.12)

It is to be noted that since limn−→∞ Dnn
nn = 0 and limn−→∞ Bn∞

n∞ = 0, we can
obtain limn−→∞ |ψn(x)− ψ̃n(x)| = 0.

Remark: We remark that the reader can easily understand that the error
analysis of Eq. (1.1) or Eq. (1.2) is a special case of error analysis of Volterra-
Fredholm integral equations system (2.24) proposed in Section 3.

4. Numerical Examples

In this section, we present numerical results for some Volterra-Fredholm
integral equations to illustrate the efficiency and the accuracy of the proposed
method. Comparing this method with other methods confirms the validity and
applicability of the presented method. All computations are performed using
Mathematica 8.

Example 4.1. [4] In Eq. (1.1), take a = 0, b = 1, λ1 = λ2 = 1
15 and K1(x, t) =

K2(x, t) = ex+t. When the exact solution is, ψ(x) = 1,
f(x) = 1

15 (15− ex(ex + e− 2)). When the exact solution is, ψ(x) = x, f(x) =
1
15 (15x− ex(xex − ex + 2)). When the exact solution is, ψ(x) = ex, f(x) =
1
30

(
ex(32− e2 − e2x)

)
.

We use the method described in this paper to determine the approximate
solutions. For the cases where ψ(x) = 1 and ψ(x) = x, we can find that ψn(x)

yields the exact solution only by setting n = 1. This can be explained as a
result of the fact that if a desired solution is a polynomial function of degree
n, the nth-order approximate solution leads to its exact solution. For the case
where ψ(x) = ex, a comparison between the exact and approximate solutions
at ten equidistant points in [0, 1] is made by setting n = 1, . . . , 5 in Table 1.
The obtained results show that the exact solution of Eq. (1.1) will be obtained
if the true solution is a polynomial function and when the exact solution is not
a polynomial, several lower-order approximations will result in an approximate
solution with high accuracy.

It is important to note that after converting equations of example 4.1 into
a system of linear equations the Mathematica command ‘LinearSolve’ is used
for the obtained system.
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Table 1. Absolute errors of exmaple 4.1 for ψ(x) = ex.

x n = 1 n = 2 n = 3 n = 4 n = 5

0.1 3.76349× 10−2 9.15552× 10−3 1.75082× 10−3 3.09725× 10−4 1.32425× 10−3

0.2 3.55673× 10−2 8.21867× 10−3 1.48846× 10−3 2.23263× 10−4 9.75866× 10−6

0.3 3.26865× 10−2 7.15838× 10−3 1.22253× 10−3 1.72639× 10−4 2.22512× 10−5

0.4 2.88896× 10−2 5.99291× 10−3 9.60332× 10−4 1.26978× 10−4 1.43368× 10−5

0.5 2.40705× 10−2 4.75186× 10−3 7.10331× 10−4 8.73098× 10−5 9.15104× 10−6

0.6 1.81219× 10−2 3.48005× 10−3 4.82069× 10−4 5.45819× 10−5 5.25494× 10−6

0.7 1.09379× 10−2 2.24327× 10−3 2.86014× 10−4 2.94739× 10−5 2.57127× 10−6

0.8 2.41911× 10−3 1.13668× 10−3 1.33242× 10−4 1.22867× 10−5 9.51633× 10−7

0.9 7.51321× 10−3 2.97965× 10−4 3.48824× 10−5 2.79036× 10−6 1.85437× 10−7

1.0 1.88859× 10−2 7.16497× 10−5 1.11951× 10−6 1.44462× 10−8 7.31082× 10−11

This example was used in [4] and has been solved by fixed point and collo-
cation methods. We present the results obtained in [4] in Tables 2, 3 and 4.
R1 and R2 denote the maximum error in the fixed point and in the collocation
methods, respectively.

Table 2. Example 1 for ψ(x) = 1 (Method in [4]).

n = 17,m = 7 n = 33,m = 8

R1 3.1× 10−5 8.5× 10−6

R2 5.7× 10−6 1.1× 10−6

Table 3. example 4.1 for ψ(x) = x (Method in [4]).

n = 17,m = 1 n = 33,m = 6

R1 1.1× 10−16 1.1× 10−16

R2 9.9× 10−16 5.9× 10−16

Table 4. example 4.1 for ψ(x) = ex (Method in [4]).

n=17, m=7 n=33, m=8
R1 1.6× 10−4 1.4× 10−5

R2 3.1× 10−5 6.3× 10−6

Example 4.2. [4] In Eq. (1.1), take a = 0, b = 1, λ1 = λ2 = 1
3 and K1(x, t) =

K2(x, t) = sinx cos t. When the exact solution is, ψ(x) = x,
f(x) = 1

3 (3x− sinx(x sinx+ cosx+ sin 1 + cos 1− 2)). When the exact solu-
tion is, ψ(x) = x2, f(x) = 1

3 (3x
2 − sinx(x2 sinx + 2x cosx − 2 sinx − sin 1 +

2 cos 1)). When the exact solution is, ψ(x) = ex, f(x) = 1
3 (3e

x−sinx(ex(sinx+

cosx) + e(sin 1 + cos1)− 2)/2).
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We apply the method described in this paper to obtain the approximate
solutions. For the case where ψ(x) = x, the first-order approximate solution
and for the case where ψ(x) = x2, the second-order approximate solution yield
the exact solution as expected, since the nth-order approximate solution yields
the exact solution if the exact solution is a polynomial of degree up to n. For
the case where ψ(x) = x2 the absolute errors between the exact solution and
its approximations are tabulated in Table 5 by setting n = 1, 2. For the case
where ψ(x) = ex, a comparison between the exact and approximate solutions
at ten equidistant points in [0, 1] is made by setting n = 1, . . . , 4 in Table 6.
The obtained results and Tables 5 and 6 show that the exact solution of Eq.
(1.1) will be obtained if the true solution is a polynomial and when the exact
solution is not a polynomial, several lower-order approximations will result in
an approximate solution with high accuracy.

Table 5. Absolute errors of example 4.2 for ψ(x) = x2.

x n=1 n=2
0.1 7.29623× 10−3 0

0.2 1.13452× 10−2 0

0.3 1.27889× 10−2 0

0.4 1.22808× 10−2 0

0.5 1.05010× 10−2 0

0.6 8.17093× 10−3 0

0.7 6.06066× 10−3 0

0.8 4.98645× 10−3 0

0.9 5.79465× 10−3 0

1.0 9.33236× 10−3 0

This example was used in [4] and has been solved by fixed point and collo-
cation methods. We present the results obtained in [4] in Tables 7, 8 and 9.
R1 and R2 denote the maximum error in the fixed point and in the collocation
methods, respectively.
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Table 6. Absolute errors of example 4.2 for ψ(x) = ex.

x n=1 n=2 n=3 n=4
0.1 4.95836× 10−3 1.08386× 10−3 1.93742× 10−4 2.73441× 10−5

0.2 8.09986× 10−3 1.69868× 10−3 2.89073× 10−4 4.14711× 10−5

0.3 9.59723× 10−3 1.92722× 10−3 3.11122× 10−4 4.21918× 10−5

0.4 9.68830× 10−3 1.85608× 10−3 2.83057× 10−4 3.61018× 10−5

0.5 8.69991× 10−3 1.57522× 10−3 2.25687× 10−4 2.68959× 10−5

0.6 7.07687× 10−3 1.17681× 10−3 1.57021× 10−4 1.73385× 10−5

0.7 5.41246× 10−3 7.53099× 10−4 9.17188× 10−5 9.28091× 10−6

0.8 4.47603× 10−3 3.92898× 10−4 4.04468× 10−5 3.70062× 10−6

0.9 5.23246× 10−3 1.76566× 10−4 9.20418× 10−6 7.73258× 10−7

1.0 8.84927× 10−3 1.69535× 10−4 1.25787× 10−6 3.21934× 10−9

Table 7. example 4.2 for ψ(x) = x (Method in [4]).

n=17, m=2 n=33, m=1
R1 1.1× 10−16 2.2× 10−16

R2 2.1× 10−15 1.5× 10−15

Table 8. example 4.2 for ψ(x) = x2 (Method in [4]).

n=17, m=8 n=33, m=8
R1 3.8× 10−4 9.5× 10−5

R2 7.8× 10−5 4.7× 10−5

Table 9. example 4.2 for ψ(x) = ex (Method in [4]).

n=17, m=7 n=33, m=8
R1 2.1× 10−4 1.3× 10−5

R2 4.1× 10−5 1.1× 10−5

Example 4.3. Consider the following VFIE [5]

ψ(x) = f(x) +

∫ x

0

ex−tψ(t)dt−
∫ 1

0

ex+tψ(t)dt, (4.1)

where

f(x) = x2 + (e− 4)ex + x2 + 2x+ 2. (4.2)

The exact solution of this equation is given by ψ(x) = x2. The VFIE (4.1) was
solved using our proposed method in this paper. A comparison between the
exact and approximate solutions at ten equidistant points in [0, 1] is made by
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setting n = 1, 2 in Table 10, and we can find that the second-order approximate
solution yields the exact solution, as expected.

Table 10. Absolute errors of example 4.3.

x n=1 n=2
0.1 1.44347× 10−1 0

0.2 1.33488× 10−1 0

0.3 1.19631× 10−1 0

0.4 1.02793× 10−1 0

0.5 8.30517× 10−2 0

0.6 6.05618× 10−2 0

0.7 3.55929× 10−2 0

0.8 8.57831× 10−3 0

0.9 1.98063× 10−2 0

1.0 4.85126× 10−2 0

This example was used in [5] and has been solved using Taylor collocation
method [23] and a subclass of spectral methods called pseudospectral method.
Table 11 shows the approximation errors in L∞ norm for the Taylor collocation
method and pseudospectral method. It is easy to see that Taylor collocation
method has a mildly growing error when N is increased.

Table 11. L∞ errors of example 4.3 for the Taylor collocation
and pseudospectral methods [5].

N 2 5 8 11 14
Taylor 9.9920× 10−16 1.5543× 10−15 2.4425× 10−15 5.7436× 10−15 1.8382× 10−14

pseudospectral 3.2125× 10−1 7.8639× 10−5 9.1700× 10−9 2.5507× 10−13 1.1241× 10−15

N 17 20 23 26 29
Taylor 3.8591× 10−13 3.9024× 10−13 6.3076× 10−12 4.0158× 10−11 2.7326× 10−10

pseudospectral 8.8818× 10−16 4.0176× 10−15 1.7764× 10−15 4.9821× 10−15 2.5882× 10−15

N 32 35 38 41 44
Taylor 2.2233× 10−9 3.3849× 10−9 1.1361× 10−8 8.3156× 10−9 2.6713× 10−9

pseudospectral 2.5535× 10−15 5.1001× 10−15 2.7756× 10−15 1.7764× 10−15 6.5781× 10−15

Example 4.4. Consider the following VFIE [14, 17, 36]

ψ(x) = −x4 − x3 + 12x2 − x− 5 +

∫ x

0

(x− t)ψ(t)dt+

∫ 1

0

(x+ t)ψ(t)dt, (4.3)

with the exact solution ψ(x) = 12x2 + 6x. According to the proposed tech-
nique, we obtain the approximate results by setting n = 1, 2 and we observe
that the second-order approximate solution yields the exact solution. This is
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easily understood since the exact solution is a polynomial function of degree 2.
Moreover, the obtained L2-norm of error by the present method are compared
with the rationalized hat functions method [36], triangular functions method
[14] and modification hat functions method [17] in Table 12.

Table 12. Comparison of L2 errors of example4.4.

Methods Errors
Hat functions method [36]

n = 8 1.4e− 1

n = 16 3.6e− 2

n = 32 8.9e− 3

Triangular functions method [14]
n = 8 5.3e− 2

n = 16 1.8e− 2

n = 32 3.7e− 3

Modification hat functions method [17]
n = 8 4.3e− 3

n = 16 2.9e− 4

n = 32 1.7e− 5

Present method
n = 1 1.5e− 1

n = 2 0

Example 4.5. Consider the following mixed Vloterra-Fredholm integral equa-
tion [1]

ψ(x) = 2 + 4x− 9

8
x2 − 5x3 +

∫ x

0

∫ 1

0

(s− t)ψ(t)dtds, (4.4)

with the exact solution ψ(x) = 2+3x−5x3. Applying the proposed technique,
we obtain the approximate results by setting n = 1, 2, 3. The corresponding
absolute errors at equidistant points in [0, 1] are listed in Table 13 and we
observe that the third-order approximate solution yields the exact solution, as
expected.

Table 13. Comparison of the absolute errors of example 4.5.

x n=1 n=2 n=3
0.1 7.02662× 10−2 6.25905× 10−2 0

0.2 1.25225× 10−1 9.04786× 10−2 0

0.3 1.59088× 10−1 9.49063× 10−2 0

0.4 1.69476× 10−1 8.48151× 10−2 0

0.5 1.56519× 10−1 6.71228× 10−2 0

0.6 1.21752× 10−1 4.70002× 10−2 0

0.7 6.68383× 10−2 2.81487× 10−2 0

0.8 7.81955× 10−3 1.30764× 10−2 0

0.9 1.04481× 10−1 3.37580× 10−3 0

1.0 2.29412× 10−1 0 0
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Example 4.6. Consider the following system of Volterra-Fredholm integral
equations [37]



ψ1(x) +

∫ 1

0

1

2
cos(x− t)ψ1(t)dt+

∫ x

0

1

2
cos(x− t)ψ1(t)dt+

∫ 1

0

1

2
sin(x− t)ψ2(t)dt+

∫ x

0

1

2
sin(x− t)ψ2(t)dt = f1(x),

ψ2(x) +

∫ 1

0

1

2
cos(x− t)ψ1(t)dt+

∫ x

0

1

2
cos(x− t)ψ1(t)dt+

∫ 1

0

1

2
sin(x− t)ψ2(t)dt+

∫ x

0

1

2
sin(x− t)ψ2(t)dt = f2(x).

For the exact solutions ψ1(x) = x2 and ψ2(x) = x3, f1(x) = 1/2(x3 + 2x2 −

4x−3 cos(x−1)−2 sin(x−1)+8 sinx) and f2(x) = 1/2(3x3−4x−3 cos(x−1)−
2 sin(x−1)+8 sinx). Using our proposed method, we evaluate the approximate
results by setting m = 1, 2, 3 and the obtained absolute errors are listed in
Tables 14 and 15. We observe that the accuracy is quite satisfactory and the
third-order approximate solution yields the exact solution, as expected.

Table 14. Absolute errors of example 4.6 for ψ1(x).

e1,m (x)

x m=1 m=2 m=3
0.1 1.59772× 10−2 5.19473× 10−2 0

0.2 1.41536× 10−2 3.19795× 10−2 0

0.3 1.41449× 10−2 1.79354× 10−2 0

0.4 1.43504× 10−2 8.72979× 10−3 0

0.5 1.36872× 10−2 3.26497× 10−3 0

0.6 1.15963× 10−2 4.93114× 10−4 0

0.7 8.00933× 10−3 5.36278× 10−4 0

0.8 3.27865× 10−3 6.44342× 10−4 0

0.9 1.92477× 10−3 5.04925× 10−4 0

1.0 6.73539× 10−3 6.38956× 10−4 0

This example was used in [37] and has been solved by the collocation method.
We present the maximum of the absolute errors obtained from Ref. [37] in Table
16.
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Table 15. Absolute errors of example 4.6 for ψ2(x).

e2,m (x)

x m=1 m=2 m=3
0.1 1.59772× 10−2 5.19473× 10−2 0

0.2 1.41536× 10−2 3.19795× 10−2 0

0.3 1.41449× 10−2 1.79354× 10−2 0

0.4 1.43504× 10−2 8.72979× 10−3 0

0.5 1.36872× 10−2 3.26497× 10−3 0

0.6 1.15963× 10−2 4.93114× 10−4 0

0.7 8.00933× 10−3 5.36278× 10−4 0

0.8 3.27865× 10−3 6.44342× 10−4 0

0.9 1.92477× 10−3 5.04925× 10−4 0

1.0 6.73539× 10−3 6.38956× 10−4 0

Table 16. The maximum of the absolute errors in[37].

x2 1.77× 10−15

x3 2.55× 10−15

In the other hand, for the exact solutions ψ1(x) = x2 and ψ2(x) = x4,
f1(x) = 1/2(x4 − 12x2 + 2x + 24 + 15 cos(x − 1) − 19 sin(x − 1) − 4 sinx −
48 cosx) and f2(x) = 1/2(3x4− 12x2+2x+24+15 cos(x− 1)− 19 sin(x− 1)−
4 sinx − 48 cosx). Clearly, according to the present technique the forth-order
approximation yields the exact solution. This is easily understood since the
exact solution is a polynomial function of degree 4. This case also has been
solved by the collocation method in [37] and we present the maximum of the
absolute errors obtained from Ref. [37] in Table 17.

Table 17. The maximum of the absolute errors in [37].

n = 11 n = 31 n = 101

x2 1.46× 10−6 2.09× 10−8 1.77× 10−10

x4 7.39× 10−5 920× 10−7 7.48× 10−9

5. Conclusion

In this paper, an efficient method based on Taylor expansion has been sug-
gested to determine the approximate solution of Volterra-Fredholm integral
equations and systems of Volterra-Fredholm integral equations. An interesting
advantage of the proposed method is to find the exact solution if the problem
has the exact solution as polynomial function. Moreover, an error analysis
was established. The method can be easily extended to systems of Volterra-
Fredholm integro-differential equations.
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